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ABSTRACT

Automatic identification of specific osseous landmarks on
the spinal radiograph can be used to automate calculations
for diagnosing ligament instability and injury, which affect
75% of patients injured in motor vehicle accidents. In this
work, we propose to use deep learning based object detection
method as the first step towards identifying landmark points
in lateral lumbar X-ray images. The significant breakthrough
of deep learning technology has made it a prevailing choice
for perception based applications, however, the lack of large
annotated training dataset has brought challenges to utilizing
the technology in medical image processing field. In this
work, we propose to fine tune a deep network, Faster-RCNN,
a state-of-the-art deep detection network in natural image
domain, using small annotated clinical datasets. In the exper-
iment we show that, by using only 81 lateral lumbar X-Ray
training images, one can achieve much better performance
compared to traditional sliding window detection method
on hand crafted features. Furthermore, we fine-tuned the
network using 974 training images and tested on 108 images,
which achieved average precision of 0.905 with average
computation time of 3 second per image, which greatly
outperformed traditional methods in terms of accuracy and
efficiency.

Index Terms— intervertebral disc, detection, deep learn-
ing, X-Ray

I. INTRODUCTION

Automatic localization of specific osseous landmarks on
the spine radiograph can be used to automate calculations
needed for diagnosing ligament instability and other injuries.
This serious healthcare condition affects approximately 75%
of patients injured in motor vehicle accidents and is a
precursor for other spine related diseases. Automation would
lead to faster and more accurate diagnosis thereby allowing
for faster and more appropriate clinical intervention [1],
which leads to better clinical outcome.

Automatic detection of intervertebral discs is an important
step towards localizing landmark points in lateral lumbar X-

ray images, which provides location information of the discs.
This information can then be used for further localizing
landmark points within the disc region. Thus the accuracy of
the landmark localization depends upon robust intervertebral
disc detection results. In this work, we focus on the first
step of landmark localizing problem — intervertebral disc
detection problem.

Object detection is one of the major research areas in
computer vision field due to the challenges brought by
low image contrasts, various image scales and etc. Recent
work on deep learning technology has made significant
breakthrough on perception based applications, which made
it a prevailing choice for many visual perception based
applications. However training a network from scratch often
requires massive amount of training data. For example, state-
of-the-art deep learning object detection network Faster-
RCNNJ2] requires about 150,000 natural images for best
performance. The lack of training data has brought a great
challenge to medical image applications from utilizing this
new technology. In this work, we demonstrate that using very
small training dataset, one can achieve great accuracy and
increased efficiency by fine-tuning a deep learning network
trained on natural images. In particular, we fine-tuned Faster-
RCNN network using only 81 lateral lumbar X-Ray images
as training data and compared the result with traditional slid-
ing window method on hand crafted features. The average
precision rate is increased to 0.65 from 0.03. Furthermore,
if trained on a slightly larger dataset of 974 training images,
one can achieve 0.905 high average precision rate and the
average detection time is greatly reduced to 3 second per
image as compared to 82 second per image in traditional
methods. This result shows the great potential of using
proposed techniques in medical image field when applying
deep learning based techniques. In the following sections,
different fine-tuning techniques are also discussed in detail.

II. RELATED WORK

Object detection has been a major research area in
computer vision field. Traditionally, hand crafted features,



such as Histogram of Oriented Gradients (HOG), Scale-
Invariant Feature Transform (SIFT) and etc are widely used
to train various classifiers. However, compared to recent
breakthrough work in deep learning field [3], [4], [5], the
performance of traditional methods are far from satisfactory.

Traditionally, object detection is performed through apply-
ing trained classifier on image with sliding window fashion
or region proposal based fashion. Sliding windows often give
more coverage to the image, however it is often too slow
for real-world application due to its large redundancy. Much
work has been dedicated to accelerate the process [6], [7],
[8]. Ren et al proposed Faster-RCNN, where a convolutional
neural network is used as region proposal network (RPN)[2].
This technique significantly reduced the object detection
time, in the meantime achieved state-of-the-art object de-
tection performance [5]. However, training such a network
from scratch requires huge amount of labeled training data,
which makes it hard for medical image applications to utilize
this new technology, due to the fact that it is extremely hard
to collect such a large data with correctly diagnosed labels.
In this work, we show that by using very small training data
one can achieve satisfactory object detection results by fine-
tuning a pre-trained deep learning network.

ITII. FASTER-RCNN

Faster-RCNN is a state-of-the-art object detection algo-
rithm based on deep learning network. The structure of
Faster-RCNN is as shown in Fig 1, where data layer is
images with various scales, convolutional neural network
is a regular deep learning classification network, for example,
a ResNet. rois is the RPN layer, which generates potential
object boxes as region of interest. ROI Pooling layer
takes region of interests and convolutional features as input
and generate the bounding box of the objects as well as
the corresponding class name. Further details of Faster-
RCNN is introduced in [2]. In this work, we fine-tuned this
network for intervertebral disc detection task and achieved
great performances. We also explored different fine-tuning
techniques and compared the performances. More details are
discussed in section IV.

IV. EXPERIMENTS
IV-A. Network structure

From Fig 1 we can see that Faster-RCNN requires a
convolutional network in Convolutional Neural Network
layer. Typical image classification deep neural network can
be used in this layer. In this work, we used ZF network
[9], which is a 5-layered convolutional neural network.
We initiate the network parameter with Faster-RCNN ZF
network using Caffe [10] for fine-tuning.

IV-B. Evaluation metrics

The detection is judged by average precision based on
precision/recall curve. Detection is considered true or false

convolutional neural network

/

ROI pooling layer
fully connected layer

bounding box prediction class prediction

Fig. 1. Simplified structure of Faster-RCNN.

Fig. 2. Example of training data. Left two images show the
raw X-ray images and the right two images show the corre-
sponding labeled images. The red rectangle boxes indicate
the ground truth location of each visible intervertebral disc.

shallow tune | deep tune

Average Precision 0.581 0.651

Table I. Average precision comparison between deep tuning
and shallow tuning.

positives based on the area of overlap with ground truth
bounding boxes. Correct detection must have overlap o of
more than 50% between predicted bounding box B, and
ground truth bounding box B, as shown below. Details of
the evaluation methods is discussed in [11].
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. fine tuning different layers: Faster-RCNN
— fine tune: cls_score + bbox_pred
—— fine tune: cls_score + bbox_pred + fc6 + fc7
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Fig. 3. Effect of shallow and deep fine-tuning on loss change
for Faster-RCNN. We can see that deeper fine-tuning yields
lower loss convergence.
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Fig. 4. Effect of shallow and deep fine-tuning VS two-stage
training on loss change. We can see that combined tuning
does not give lower convergence loss.

IV-C. Training data

Our smaller training dataset consists of 92 lateral lumbar
X-Ray images. We randomly divide the dataset into 81 train-
ing images and 11 testing images. In the larger dataset, we
used 974 training images and 108 testing images. Examples
of raw images as well as the labeled training data are shown
in Fig 2. As we can see from the image, the size of each
intervertebral discs are different. The size of the image also
varies from 500x600 to 500x1309 pixel. The number of
visible vertebrae in the image varies from 5 to 12 per image.

Using our training data, we fine tune the pre-trained
Faster-RCNN ZF network as specified in section IV-A.
While fine-tuning, one of the metrics we use to determine
the tuning performance is observing the loss change through
training iterations. In this work, we used Smooth L1 Loss
function, which is described in [12]. Following sections show
the performances of different tuning techniques. For the best
performance, we used initial learning rate of 0.01, learning

= = ull g disc 0.999
disc 0.999 disc 0.998 v
=B Gisc 1:000 N c 0.994 disc 1.000

disc 1.000 disc 1.000

<
disc 0.999

disc 0.998 disc 0.999

disc 0.999 disc 1.000

-dlsc 0.989
L%

disc 0.997

« disc 0.990
disc 0.999
disc 0.999

disc 0.896 “ssasundisc 1.000

disc 0.994 disc 0.999

disc 0.990 disc 1.000

e} disc 0.982

Fig. 5. Example of testing results.

rate dropping ratio is 0.1, weight decay is 0.8, step size for
dropping learning rate is set as half of the entire learning
iterations.

IV-D. Shallow tuning and deep tuning

In this section, we compare the performances of shallow
tuning technique and deep tuning technique. In shallow
tuning, we tuned last two layers, which are cls_score and
bbox_pred. In deeper tuning, we tuned last four layers,
which are cls_score, bbox_pred, fc6 and fc7. Fig. 3 shows
that for 40000 training iterations, fine-tuning deeper layer
yields better performance. As we can see that deeper layer
training converges to a lower loss value by the end of training
cycle. In the meantime, Table IV-B shows that deeper fine-
tuning also gives better precision performance on testing
dataset.

IV-E. Two-stage-tuning

In order to examine if combining shallow and deep fine-
tuning together would give performance boost, we fine-
tuned network using two-stage-tuning. First we deep tune the
network as described in section IV-D and using the trained
network, we further train the shallow layer of network, such
that the parameters in last layer can have a finer adjustment.
From Fig. 4 we see that extra stage of tuning can give faster
convergence but achieve similar convergence value.

IV-F. Processing time and qualitative result

The average detection time is 3 second per image on
Geforce GTX 1060 mini GPU. Sample testing results are
shown in Fig. 5. We can see that the detection result with
higher confidence is with great accuracy, so that the number
of true positives under high confidence is high.



AVG precision | AVG time (sec)
HOG+SVM (smaller dataset) 0.032 26
Faster-RCNN (smaller dataset) 0.651 10
HOG+SVM (larger dataset) 0.091 82
Faster-RCNN (larger dataset) 0.905 2

Table II. Comparison between traditional sliding window
based method and Faster-RCNN based method on both
smaller dataset, which contains 81 training image and 11
testing images, and larger dataset, which contain 974 training
images and 108 testing images. The average time is the time
taken under the corresponding average precision rate.

IV-G. Comparison with baseline traditional method

We compared Faster-RCNN based approach with tradi-
tional sliding window approach on both smaller dataset
and larger dataset. We extracted Histogram of Oriented
Gradient (HOG) features from each training sample and
trained SVM classifiers and used sliding window fashion for
detection phase. Table IV-G shows the best performing result
from each method and we can see that Faster-RCNN based
approach outperformed traditional sliding window detection
method in both accuracy and efficiency with a large margin
in both datasets.

V. CONCLUSION

In this work, we used Faster-RCNN object detection
method as the first step towards automatically identifying
landmarks from spine X-Ray images. Due to lack of an-
notated medical images, training deep neural networks can
be very challenging. In order to overcome this issue, we
show that by fine-tuning a pre-trained deep network on small
medical dataset, one can achieve satisfactory results. Our
experiments demonstrate that Faster-RCNN based detection
method outperformed traditional object detection method
by a large margin. Additionally, we also explored different
fine-tuning techniques and compared the performances on
our medical dataset. For future work, we will experiment
on deeper network to improve the detection precision and
compare the result with more traditional methods.
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